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Abstract

The object of this study is to find the optimal tréjectories and
corresponding minimum turning times for a high performance aircraft
with and without thrust reversal to perform a prescribed turn, and
then to compare those trajectories and times to evaluate the benefit of
thrust reversal. dptimal_control theory is applied to solve the mini-
mum time to turn optimal control problem, using a subop .mal control
problem approach and a second-order parameter-optimizati.a method.

The resuits of the study found that the suboptimal control approach
‘was -effective in solving the problem, that thrust reversal is beneficial
in reducing turning times if the aircraft's initial velocity is above
the corner velocity, and that thrust reversal is not beneficial iq per-

forming a minimum time turn without losing emnergy.
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MINIMUM TIME TURNS WITH THRUST REVERSAL

I  Introduction

Background

The F-15 Eagle is an example of a high speed, high thrust, high
performance aircraft. One of its notable characteristics of performance
is having a thrust to weight ratio greater than unity. A great deal of 3
research is preséntly being directed in the area of aircraft thrust. Not

only in the sense of finding ways to increase thrust, but also to find

ways to better use and manage thrust. For example, direct thrust is used

in V/STOL aircraft such as the Harrier to decrease or eliminate take-off
and landing distances. Jet engine exhaust is directed over the upper
surface of the wing of Boeing's YC-14 to create more lift and thus egabling
larger gross payload weights. Thrust vectoring through the use of special
jet engine exhaust nozzles is being studied to determine if it can pro-
vide the directional stability and control to replace the verticle stabi-
lizer of an F-111 aircraft. In-flight thrust reversal‘is another area of
research, and is the one with which this thesis is concerned.

Thrust reversal has been used to a limited extent on both com-
mercial and military aircraft for the purposerf_decreasing landing roll.
The question is, can thrust reversal improve the in-flight performance of
a fighter aircraft like the F-15? Can it do so by increasing the air-

craft's capability to decelerate? Thrust reversal may prove valuable

during a high G turn to escape a pursuer or to close in on an advisary.




An Aircraft's turning performance is characterized by the time it takes
to complete a turn. For a set of prescribed initial and final conditions
describing a turn, there is an optimal trajectory and, thus, an optimal
velocity profile that can be flown to complete ﬁhe prescribed turn in
minimum time. Thrust reversal could be beneficial in helping an air-
craft follow that optimal velocity profile depending upon the initial
conditions from which the turn is initiated. However, it could also ‘
decrease the aircraft’s specifi; energy which would be unfavorable since
the advantage in an air-to-air combat situation is maintained by the
aircraft with the greatest specific energy.

Optimal control tﬁeory has been used extensively to find the
optimal aircraft controls and thus, the optimal trajectories for a high
performance aircraft without thrustvreversal to perform a minimum time
turn. However, no consideration has been given to the use of thrust
reQersal to improve the minimum time to turn. For this reason,.thru;t
reversal is studied to determine its feasibility for use’in improving

an aircraft's turning performance.

Problem Statement

The problem is finding the optimal controls which will maneuver

a high performance fighter aircraft through a particular turn prescribed

by a set of initial and final conditions, and doing so in the minimum

P

amount of time. The problem also includes finding thoserptimal controls
and minimum turning times for an aircraft with and without thrusi reversal.

The turning maneuvers must also be within the aircraft's capability. For

example, the aircraft's maximum angle of attack before buffeting and




stalling occur cannot be exceeded. The maximum and minimum available

thrust values cannot be exceeded. And last, the aireraft's structural
load 1limit cannot be exceeded.

The object of this study is to find the optimal trajectories
and corresponding minimum turning times for a high performance aircraft
witﬁ and without thrust reversal to manuever a prescribed turn, and,
then to compare those trajectories and turning tifies to evaluate the

.

benefit of thrust reversal.

Scope

The scope of this study is limited to finding the optimal trajec—
tories and minimum turning times for turns initiated from two different
initial conditions? but always terminated by a single final condition.
The scope also includes finding those trajectories and turning
times f&r an aircraft with and without thrust reversal while all other

aircraft characteristics remain the same.

Assumptions

The following assumptions are made in order to model the equations
of motion, the aerodynamic and thrust forces, and the atmosphere: For
the equations of motion, it is assumed that the aircraft's turns are
performed over a flat earth with a constant gravitational acceleration,
that the aircraft flies coordinated turns, that negligible fuel is con-
sumed during the maneuvers, that the error due to the thrust vector not
being colinear with the velocity vector is negligible, and that the error
due to making small angle assumptions (i.e., cosa=1 , sino=a , for

small o ) is also negligible. These assumptiops are typical when

‘ 3
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describing the equations of motions for a point mass aircraft which is
the model commonly used in studying minimum time turns for an aircraft.
For the aerodynamic and thrust forces, it 1s assumed that the 1ift coef-
ficient is a linear function of the angle of attack up to the maximum
angle of attack before buffeting and stalling occur. The drag coefficient
is a.function of the square of ‘the 1ift coefficient. These assumptions
are based upon thin airfoil theory and are appropriate for use in this
study. It is assumed that the maximum available thrust is constant
throughout the turning maneuvers. This assumption is valid due to the
small change in density ratio due to change in altitude during the turns.
For the atmosphere it 1s assumed that the aircraft maneuvers are per-
formed in the Standard Atmosphere is defined by NASA in Ref (1). This
is common practice in the study of aircraft performance problems. It is
also assumec that the aircraft initiates the turns from straight and
horizontal flight, and that its angle of attack, bank angle, and théust
can change instantaneously. Instantaneous controls are valid since an
exact model of control response is not necessary to study the benefit of
thrust reversal.

All of these assumptions are made to both match the assumptions
made in Ref (2) and to help simplify the complexity of the problem. The
errors created due to these simplifications will be negligible and the
stated purpose of this study can effectively be accomplished. The need

to match assumptions with those in Ref (2) will be discussed in the

approach to the problem.




Summary of Current Knowledge

Hennig, Bolding, and Helgeson, in Ref (2), obtained numerous
results for minimum time turns for an aircraft without thrust reversal.
Some results were obtained for turns initiated from two different initial
conditions, but with the same final conditions, and for various maximum
thrust to weight ratios. The results of two datg sets (Ref {2:99]) are

of importance for the sake of comparison. They are summarized as follows:

DATA SET | T/W Vi (ft/sec) hi (ft) Vf (ft/sec) hf (ft) te (sec)
6 1.5 | 621 13,990 794 12,300 10.5
12 1.5 903 13,990 886 17,635 11.2

Table 1. Results from Previous Work (Ref [2])

These results are b#sed upon the initial turning conditions of flight
patﬁ angle, © , and heading angle, { , both equal to zero, and qhe
final turning conditions 'of 6f=0 and wf=180° .

The same aircraft and the same initiai'and final conditions as
specifiea in data sets 6 and 12 are used in this study for reasons

discussed in the approach to the problem,

Approach

A particular aircraft and turning situation must be selected in
order to study the benefit of thrust reversal upon turning performance.
Also, a particular optimization technique must be employed to find the
minimum time for the selected aircraft to perform the specified turn.

The particular aircraft and turning situations are selected from

Ref (2). This is done for the sake of comparing results in Ref (2) to
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the results obtained in this study for an aircraft without thrust

reversal, This also justifies the assumptions used as they are identical
to those used in Ref (2). A comparison is necessary to lend credibility
to the results of this study since a different éptimization technique is
used in this study.

The approach used to solve for the optimal controls and minimum
turning times is developed by Hull and Edgeman in Ref (3). They develop
a suboptimal control approach t; optimal control problems using a second-
order parameter optimization method. The problem of finding the optimal
controls and minimum turning times is a very complex problem. The solu-
tion complications arise because the physics of the problem, such as
describing the equations of motion for an aircraft, are so complex that
an analytical solution is 1mpossib1é. The optimal control problem
approach is very complex and exhibits certain inherent solution difficul~
tiés. Ref (2) uses this approach with a gradient-restoration optimi;a-
tion technique. The inherent solution difficulties will'be pointed out
in section III. The suboptimal control problem approach reduces the
complexity and eliminates the inherent solution difficulties aésociated
with the optimal control problem as will be pointed out in section IV.

It is for this reason that the subopgimal control approach is used.

The following sections will define the minimum time to turn

problem, will analyze the optimal and suboptimal control problem

approaches, will discuss solving the suboptimal control problem, and will

present the results and conclusion obtained from the study.




II Defining the Minimum Time to Turn Problem

The first step in analyzing thrust reversal is to define the
minimum time to turn problem. This involves defining the particular air-
craft and the turn it is to perform, and then modeling the motion of the
aircfaft, the aerodynamic and thrust forces, and the atmosphere in which
1} flies. Also, the constraints upon the aircraft.must be defined. Each

of these items are now considered individually.

The Aircraft and the Turn

As mentioned previously, the aircraft and the type of turn per-
formed are selected from Ref (2) for the purpose of comparing results.
A hypothetical aircraft is used in Ref (2) and it is characterized by '

the following parameters (Ref ([2:97]):

CL = 5.0 ] S = 237 sq ft
o

CDO = .02 Oax = .2 radians
K= .05 (T/W)max = 1.5
W= 12,150 1b. (L/W)max = 7.22

Some of these parameters will be used when ﬁodeling the aerodynamic and
thrust forces. The type of turn performed assumes the aircraft to be
flying straight and horizontal immediately before entering the turn.
Thus, the initial heading and flight path angles equal zero. The turn

is completed when 9f=0 and wf-180° . Thus, the initial and final

conditions of the problem are as follows:




CASE Vi (ft/sec) hi (ft) 91° wi° 6f° wf°

621 13,990 0 0 0 180
2 903 13,990 0 0 0 180

Table 2. Initial and Final Conditions of the Turns

Since in both cases the initial altitude is 13,990 ft, the gravitational
acceleration at that altitude, g=32.131 ft/sec? (Ref [1:160]) is used as

the constant gravitational acceleration throughout a turn.

‘.

Modeling the Motion of the Aircraft

The equations of motion for flight of a point mass aircraft over

a flat earth are derived in Ref (4:48-49) and are:

% = VcosOcosy . 1)
y = VcosOsiny | . (2)
ﬁ_= Vsinb ' 3)
V= g(%cosecosc - 3-— sinb) | ©(4)
) =AQg§$n¢ + gL;ng,_ gcgse - %%(sin¢cosésin§-cos¢sin€) (5)
b = ESI00inesly | 6)

Assuming that a coordinated turn is performed, that the error due to the
thrust vector not being colinear with the velocity vector is negligible,
and that the error due to making small angle assumptions is negligible,

then Q=0 , sinZ=0 and €=0 , and sino=0 and cosa=1 , respectively.




The equations of motion then become:

x = VcosBcosy . @)
y = VcosOsiny . (8)
b = Vsind ' 9)
V=gl - D~ sind) ~(10)
6 = &1a + Bycosd - cose] (11)
o b - BSint L, L (12)

These equations are used to model the motion of the aircraft with respect
to an earth fixed coordinate frame. .The state variables in these equa-
tions are x , ¥y o, h , V , 6 , and 'w . The control variables
are o« 4, ¢ , and T . A new control variable for T will be defined

in the following discussion.

The Aerodynamic/Thrust Forces

Lift and drag are the two aerodynamic forces in Eqs (10) through

(12) and can be expressed as:

2
pooV SC

L
L=——5— (12)
2 .
L
—3 (13) .

The assumptions made based upon thin airfoil theory lead to the following

expressions for the 1ift and drag coefficients:




o (14)

C.=¢C +KCL2
o (15)

For use in the equations of motions, the expressions for % and %

are:
2
L _ OOUV S c o »
W <W La (16)
p_ov3s
D o
= = ——— (C.. + KC.2?) _
W W D, L’ an

The thrust to weight ratio is also needed for use in the equa-
tions of motion. Since it is assumed the maximum thrust is constant

during tufns, thrust will be defined by:

T-= TmaxTr (18)

vhere 7 1s the thrust control variable. Assuming constant aircraft

weight during turns, the thrust to weight ratio beéomes:

. .max T .
* w7 Quax” (19)

=|3

The Atmosphere

Assuming a standard atmosphere, the density ratio (Ref [5]) is

expressed as:
g ——
onoe - b g
o ° (20)

10
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i
b vhere
2 .
P, = 002378 slugs/ft’
i g, = 32.174 ft/sec?
To = 518.688° R
n= 1,235
R = 1715 ft?/sec’-°R .
The Control Variable Constraints
There are . three physical constraints upon the aircraft. The air-
craft has a maximum angle of attack, a maximum structural load limit or
E load factor, and a maximum and minimum thrust. These constraints are
E expressed as:
as % nax . (21) :
I L, ,L . |
; —_ & (= H
; W 5 @ max (22) |
R and .
Tmin sT< Tmax (23)

or, since a new control variable for thrust is defined

Tnin $ms Tnax (24)

t The load factor constraint will be discussed more fully in section V.

11




111  The Optimal Control Problem Approach

The optimal control problem approach is discussed to show the
complexity and the inherent solution difficulties of the approach. It
is also valuable to do so as some important information is learned con-
cerning the nature of the solution. First, the minimum time to turn
optimal control problem is defined. Second, the conditions to be satis-

fied by a solution are discussed. And third, the method of solving for

a solution is discussed.

The Optimal Control Problem

The optimal control problem is a functional minimization problem.
It is desired to find the functional relationships for the control vari-

ables that will minimize the time to turn, or the performance index

G=tg » (25)

subject to the differential constraints (equstions of motion) expressed

vectorally as
X~ f : (26)

where X 1is the state vector containing the state variables and f 1is
the vector containing the right side of Eqs (7) through (12). The problem
is also subject to the control variable constraints, Eqs (21) through (24),

and the initial and final conditions, Table ?. The final conditions are

expressed vectorally as M . That is




M) =8 (27)

M2 = wf - 180° | (28)
1f the final conditions are satisfied, then

M=0 ‘ (29)

The Calculus of. Variations is applied to find the necessary and.

sufficient conditions to be satisfied by the optimal contrcl variables.

Conditions to be Satisfied
(Ref [6:149-1541)

F If the augmented performance index, J , is defined by

: y

3

E J=0+vH +5 AT ee-xyde ~(30)
] ty

where v and XA are lagrange multiplier vectors, then the Variational

Hamiltonian, H , is expressed vectorally as
f (31)

The optimal controls expressed vectorally as U must satisfy the first

variational requirement or the Euler-Lagrange equations expressed vec-

torally as
. T
A = -Hy (32)
y T
X =1 _ (33)




P —y T

min H

Yopr = U (34)

Eq (34) basically states that the optimal controls are those that mini-
mize H . The first variation requirement also provides what are termed
naturzl or transversality conditions and corner conditions expressed

vectorally as:

: oy ' (35)
H. + G =0
N (36)
XlT + Gx =0
i (37)
xfT -G =0
£ (38)
A@) - ¢, =0
c (39)
ATy + G, =0
. c ’ (40)
G, =0

As can be seen, the complexity of the problem is substantial and

becomes even more complex when attempting to solve to the problem.

Solving the Optimal Control Problem (Ref [7])

The optimal control problem, when the controls are neither on the
boundaries nor singular, can be easily transformed into a boundary value
problem. In this case the solution for Eq (34) is identical to solving

HU-O for the control variables as functions of X and A .

4
!




These expressions for the control variables are substituted into the

A and X equations. By guessing the unknown initial values, the i
and i equations can then be numerically integrated from the initial
time to the guessed final time and the resulting final conditions com-
pared with the desired results. Various optimizing techniques can be
employed to iteratively change'the guesses for ;he unknown values and

attempt to satisfy Eqs (32) through (42). :

Inherent solution difficulties are involved in guessing the
final time and the unknown initial values for the X 's. Guessing the
final time is easier since it is a physical variable in the problen.
But this is not. so for the A 's since they are not physical variables
and one has no intuitive feeling for their values. And, if there are
any corner conditiomns, they must satisfy Eqs (40) through (41). Also,
guesses for unknown corner values must be made. Many of the optimization
techniques that can be used require good initial guesses for the un#nown §
values before the technique will converge. Other optimizations techniques
do not require good initial guesses; however, they are slow to converge.
Thus, guessing the unknowns makes finding a solution very difficult.
Another solution difficulty, present in the problem, occurs because
one of the control variables is a singular control. This can be demon-
strated by looking at the second partial derivatives of the Variational
Ramiltonian. The Variational Hamiltonian expanded from vector notation

becomes

H= >‘1f1 + )‘2f2 + )\3f3 + A4f4 + )‘sfs + )‘6f6 (42)




Xl

where the f 's are the right sides of Eqs (7) through (12). The per-
fect derivative of the Hamiltonian with respect to T is

- g 8 gasind
Hp = A, 5w * s v 0% * Ag Yicost (43)

The second partial derivative is

HTTE 0 - 44)

Eq (44) identifies the thrust control as a singular contrcl. The H¢¢
and Haa equations are not identically equal to zero. Eq (43) is not
a function of T ; therefore, H 1is linear with respect to T and
HT is the value of the slope. Thus, in order to minimize H with

respect to T , thrust must satisfy one of three solutions depending upon

the valug for HT . These solutions are:
1. T= Téin whgn HT >0
2. T = Tmax when HT.< 0
. 3. Tmin £TZXE Tmax when HT =0 (45)

The problem can still be transformed into a boundary value problem but not
as easily. 1In order to find an expression for T when HT=0 s One must
use the relationship

n

d (HT) .

=0 n=1,2,3...)
de" (46)

starting with =n=1,2,... until an expression containing T can be

obtained. Then when HT=0 , that expression can be substituted into

the X and A equations, etc.




gt s

Thus, it is known that the thrust is a singular control and that
it adds to the difficulty of finding a solution. It is therefore
desirable to use a different, approach which simplifies the complexity of
the problem and which can handle singular controls more easily. The

suboptimal control approach accomplishes that task.

17

e T N vy et ¥ g




ROV S

P W

Cy

-

IV The Suboptimal Control Problem Approach
(Ref [7] and (3))

cheitnemhaizi

The suboptimal control problem approach is discussed to show
how it simpiifies thg optimal control problem and climinates the
inherent solution difficulties involved with the optimal control problem 1
approach, First, the minimum time to turn suboptimal control problem
is defined. Second, thé conditions to be satisfied by a solution are

discussed. And third, the method of solving the suboptimal control

problem is discussed.

The Suboptimal Control Problem

The suboptimal control problem is a parameter optimization
problem, but otherwise it is basically the same as the optimal control
problem. The main differencg is that in the suboptimal control : g
problem the control variables are described by some mathematical fcrm
with unknown coefficients defined by vector B . The mathematical

form expressed functionally as
U = U(t,B) ‘ 47)

can be an ordinary polynomial, a Fourier series, a Chebyshev series,

etc. If A denotes the following vector of unknown parameters: ‘

T
A= [tg,B) (48)

then the Eqs (7) through (12) can be integrated from t=0 to t=t. ,

subject to all control variable constraints, and the resulting final

18
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-4‘ conditions expressed functionally will be

| ' ‘ Xg = XD : (49)
$ or in other words, the final states are a function of the parameter 7

vector A . And thus so are the performance index and the final con-

k- dition vector M .

Hence, the minimum time to turn problem expressed functionally
entails finding the paramefer vector A which minimizes the time to

turn, or the pe?formance index
G = G(A) (50)
subject to the differential constraints (equations of motion)

X = £(X,A,t) - (51)

the control variable constraints, the initial conditions, and the final

condition vector

M(A) =0 (52)

Ordinary Calculus is applied to find the necessary conditions

. to be satisfied by the solution for the parameter vector A .

Conditions to be Satisfied

If the augmented performance index, F , is defined functionally

as:

adan

F(A,V) = G(A) + VIM(A) (53)

19




| an optimal parameter vector A must satisfy the first variational

requirements expressed functionally as

FAT(A,\J) =0 (54

M(A) = O (55) ;
where . A lj
P\ "3 | . (56)

and contains what is termed first-order information or information con~
cerning the change in F with respect to changes in the elements in A .
Thu;, FA represents a slope and indicates in whiéh direction A should 1
.change to drive FA towards zero. FAI is a column vector cbntaining ele-l
ments equal in number to the number of unknown parameters in the vector A.
M 1is the final condition matrix containing two elements. These are the
only requirements a solution must satisfy. Thus, the suboptimal control
problem is extremely less complex and does not have the inherent solution
difficulties associated with the optimal control problem. If an effec-
tive method of solving for an optimal parameter vector A is available,

then the suboptimal control approach is a very desirable means to study

thrust reversal.

Method of Solution ' i 4

Hull and Edgeman in Ref (3) formulate a second~order parameter-

optimization technique and algorithm specifically for application to sub-

optimal control problems. In summary, the technique uses second-order

information to determine how to change the parameters in the vector A

20




and the Lagrange multiplier vector Vv such that the vectors FAT and

M are driven to zero. The vector relationships used to change A and

VvV are: '
_ -1, T.~1 -1_ T
v = (MAFAA MA) (—PMAFAA Fy + QM) (57)
-1 T T
0A = “FAA (PFA + MA dv) (58)
where
oM
M=% | (59)
P = 3°F
AA - 9p2 (60)

and P and Q are scaling factors which control optimization and end
condition s;tisfaction, respectively. FAA contains the second-order
infbrmation mentioned gbove. FAA represents a change in slope anq.
indicates the direction in which slope is increasing or decreasing. The
algorithm developed to iteratively change A and Vv goes as follows:

1. guess A and Vv

2., integrate the equations of motions to obtain Xf H

3. compute M , MA s MAA . FA , and fAA 3

4. select values for P and Q@ and compute &v and do ;

5. set A=A+Sv and Vv=Vév

6. check convergence criteria and if unsatisfied go to step 2.
This algorithm lends itself for use in developing a computer program to
sPeed computations and thus, quickly find an optimal parameter vector A .

The procedure is straightforward; however, some discussion on guessing

v , selecting P and Q , and stopping the computation is required.
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By using a gradient or first-order approach, an initial value
for Vv can be computed, thus eliminating the need to guess v . Hull

and Edgeman do so and obtain the following vector relatiénships:

T.~1 T '
v= M7 /PN - M6, ) (61)
6A = —PFAT (62)
where
¢, =€

A JA (63)

FA contains the first-order information used to calculate SA . In
practice Eqs (61) through (62) should be employed initially for a number
of iterations until they become inefficient. Then, with the current
values for Vv ‘and A , switch to the second-order equations (Eqs-[57]
through [58]).

The procedure for selecting P' and Q is not obvious. P and
Q must be selected to insure that &v and &8A do not become too large
so that v and A are not changed too much such that the algorithm will
not converge to FA=O and M=0 ; When in the neighborhood of the
optimum A , P and Q can be chosen so that the norms IIFATII and
IIMII always decrease. A search oﬂ P and Q can be conducted to |
find the lowest values for IlFATll and IlMII' . P and Q can be
chosen on the basis that ||8v]| and ||8A|] are to be no greater than
certain percentages of Ilvll and ]IA]I s respectively. Finally,
the iterative procedure7can be started with small values of P and Q ;

and, when it is apparent that the optimal solution is being approached,

22
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their values can be Increased. Regardless of the approach followed,
it is necessary that P=1 and Q=1 when in the final stages of con-
vergence. If the second-order method is started with the results
obtained from the gradient method which satisfy the final conditioms,
one should set Q=! to hold the final conditions while optimizing.
Convergence is achieved when ||FATII and |]M|] are less
than somé small positive quantity, since it is desired to satisfy the
requirements FAT=0 and M=0 . An alternate approach is to monitor

Ilévll and ,}GAII and when they are less than some small positive

quantity, terminate the algorithm,
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V  Solving the Minimum Time to Turn Suboptimal

Control Problem

The minimum time to turn suboptimal control problem is suffi-
ciently complex to require numerical methods and the use of a computer
to séek solutions. 1In section'II the minimum time to turn problem was
defined and all the aircraft parameters, turning situations, equations
of motion, aerodynamic/thrust forces, atmospheric parameters, and con-
trol constraints were specified. It is now necessary to adapt the
defined problem for application in the algorithm specified in section IV.
This will include deriving the final form of the equations of motion,
incorporating the control variable constraints into the problem, and
defining the mathematical form for the control variables so that the
equations of motion may be integrated to find Xf . Next, the numgrical

methods to be used to find X M, M y M s, F

A AA

must be specified. And last, tonvergence criﬁeria and an approach to

, and F

f A AA

guessing A must be determined. These areas are discussed individually

as follows.

Equations of Motion

Egs (7) through (12) are to be integrated to find Xf . The
final time is one of the unknown parameters in the problem. It will be

convenient to define a nondimensional time as

. 1= O<t<1) (64)
tf .

conoadta balde
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so that the equations of motion are integrated from T1=0 to T=1-
regardless of the final time parameter. The equations of motion must
be transformed so that they will be functions of the nondimensional

time T . By the chain rule

: dX _ d
o d4%_dxdu_dx 1,

dt dt dt  dTt te (65)

and thus

—-— =t

at -t X (66)

and Eqs (7) through (12) can be transformed by simply multiplying the

right side by the final time. By doing this and substituting the known

aircraft and atmospheric parameters into Eqs (16), (17), (19), and (20),

and substituting the constant gravitational acceleration and Eqs (16),
(17), (19), and (20) into Egs (10) through (12), the resulting equations

of motion as a function of T are:

dX

reie thcosecosw (67)
dy _ :

at thcosGsinw _ | (68)
dh _

v ¢ {48.1965m - V2[(.0000149

dt f ) -

+ .0009315 o2)(1 - .0000069h )*-256] - 32,131 sinf} (70)
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L e aike _mm e

i Lo a8 _ 32.131 sind
ff ‘ at te( v ) [(1.57m0

+ .000116V2a(l - .0000069h )" 25%)cosp - cosb] (71)

qa _ 32.131 sing
dt tf( Vcosb ) (1. 5ma

+ .000116V2a(l - .0000069h)""23) (72)

The Control Variable Constraints

Eq (24) defines the thrust control variable constraint. The
thrust control variable w has a maximum value of one. Its minimum
value is zero for an aircraft with no thrust reversal. Thus, the thrust

control variable constraint for no thrust reversal becomes
3 . 0<T< 1.0 (73)

3 - For an aircraft with thrﬁst reversal, the minimum 7 value is specified g
to be -.6 . This value is selected based upon educated estimates of

the maximum reverse thrust capable and that which could be sustained by

a pilof during the turn. Thus, the thrust control variable constraint

for thrust reversal becomes
-6 << 1.0 B¢ 23

Eqs (21) and (22) both define a constraint upon the angle of

attack. The load factor constraint becomes

2
DOGV SCLa(! < (_I;)
2W W/ max (75)
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when Eq (12) is substituted into Eq (22). Substituting the known

parameters into Eq (76) and (21) the load factor constraint can be z
{

reduced to
ov20 < 62660.6 (76)
and the angle of attack constraint becomes
@< .2 | (77)

These two constraints can be seen pictorially in Fig. 1.

amax

_ 62660.6

o
ov?

Velocity vc

Fig 1. Angle of Attack vs Velocity Constraint

The corner velocity Vc is the velocity at which the 1ift coefficient
required for flight at maximum load factor is equal to the maximum 1lift
coefficient. Based upon this definition the corner velocity can be

expressed as

1
' v, . 26606 ;
max (78)

Pt anapaae

P
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Substituting in for o ax the corner veloéity relationship becomes

-k
vV, =559.7350¢ ] (79)

This relationship becomes important when studying the optimal trajec-
tories which result in minimum times.

The control variable constraints are incorporated into the
problem basically by setting the control variable equal to its maximum
value when it exceeds its maximum and equal to its minimum value Qhen
it falls below its minimum value. For high:r order controls, such as
linear, quadratic, etc., the control histories may intersect their
boundaries at various times which can be predetermined before integrating
the equations of motion. If this situation occurs.integration takes
place from 1=0 to T=T

, from T=1 to =T, etc., where T s

1 1

12 R etc.,bare the times, ordered consecutively, when the controls
intersect their boundaries. Doing this insures accuracy when inteérating
the equations of motion such that the value for the controls change
exactly at the correct time during integration.

For the load factor constraint it cannot be predetermined when
the afrcraft's velocity will equal the corner velocity. When the air-
. craft's velocity is below the corner velocity a can equal the value_
expressed by the mathematical form describing the angle of attack so long
as « is not exceeded. When the aircraft’'s velocity is above the

max

corner velocity Oax MuSt be described by

ax

. S _ 62660.6
max vig . (80)
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This is accompiished by checking during integfation to determine when
the corner velocity is reached and changing to the appropriate describing

equation for angle of attack when it is.

Mathematical Form for Describing the Control Variables

The mathematical form used to describe the control variables is
a series using Chebyshev polynomials defined on the interval (0,1) .

The polynomials, Tj , as a function of T for j=1 to j3=6 are

2t - 1
= 812 - 81 + 1
= 3213 - 4872 + 181 - 1
—'128T“ - 2561 + 16072 - 3271 + i

= 51275 - 128071"% + 1120T® - 40012 + 50T - 1

The control variables are then described by

NPH

$= T B,T
0=1 78

NPI
m= I CT
m m
m=1




v—-. -

NA
a= I DnTn
n=1 (89)
where B , C , and D are the unknown coefficients with NPH |,

NPI , and NA the number of unknown coefficients for ¢ , =n , and

a respectively,

It is appropriate here to talk about the conditions under which the

@ and T coefficients will not be parameters in the problem. Take the
case when a and 7 are described with only one coefficient, or are
constant controls. If a and/or T are at their maximum values and
if ghe FA terms corresponding to the o and/or Aw coefficients are
negative, then in order to change the coefficients so as to drive their

corresponding F terms to zero (recall F,=0 is desired), the o

A A

and/or T coefficients must exceed their allowable maximum value. Vice
versa, if 1 is at its minimum value and FA corresponding to the 7
coefficient is positive, then the T coefficient must fall below its
allowable minimum value. 1In either case, the a and/or 7 coefficients
no longer become parameters because their values are fixed at their maxi-
mum or minimum limits and their corresponding FA terms cannot be

driven to zero. In such a case the effect of the a and/or T coeffi-
cients must be eliminated in order to calculate &v and G6A without

their influence. This is accomplished by dropping all references to

these parameters in the matrices used to calculate &v and &8A .

Numerical Methods

Eqs (57), (58), (61), and (62) contain the matrices M , MA .

MAA , FA , and FAA . These matrices are determined using numerical
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- t techniques. FA and FAA

(Ref [3:484]):

can be evaluated from the expressions

FA = GA + v MA (90)
) Faa = Caa ¥ ViMaar + VoMago (91)

where G, is known analytically and =0 since G=t Thus, the

A Can
only unknowns are M , MA s and MAA .

To evaluate M , Eqs (67) through (72) must be integrated to

£

PRV

determine the final states. A fifth-order, Runge-Kutta, controllable

step size integration technique using Fehlberg coefficients (Ref [8]) is

used for the integration. The Fehlberg technique is used because it controls

the amount of truncation error in each integration step by controlling
the step size. Thus, it can take the largest step possible without ‘ 1
violating the allowable truncation error prescribed in the program; The
result is fewer steps taken to integrage and thus, smaller accumulated
truncation error. This makes the Fehlberg technique more efficient and

accurate than other Runge-Kutta techniques. This proves beneficial when

i

calculating numerical derivatives.

The MA and MAA

ferences numerical derivative technique (Ref [9:21-22]). Using a nominal

matrices are determined using a central dif-

An where An are the individual elements in A , the equations of
motion are integrated to obtain a nominal M , then using a positively

perturbed An or

.

A = An + Gn

n+ (92)
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where Gn is some small positive value, M, and M_

+

The central differences representation for MA is
) n

M# - M

. = —— 2
MAn 73 + O(Gn)

n

(93)

are obtained.

(94)

where 0(6;) represents an error term of order of magnitude 6; .

The MA

matrix contains two rows. The first row is determined using

Ml values in Eq (94) and the second row is deterhined using M2 values

in Eq (94). The M matrices are determined in a similar manner;

AA

however, two elements An and Am must be preturbed both positively

and negatively to obtain M_,_+ s M s M , and M_+ . The central

— +—
differences representation for MA A are
n m
M+ - 2M + M_ .
nm n

if n=m , and

- - +
M My -M_ -M +M
AA =
n m 48 §
n m

v G(Gném)

if n#m. The M matrix is actually two matrices.

AA

(95)

(96)

One is determined

by using M, values in Eqs (95) and (96) and the other by using M
1 : 2

values in Eqs (95) and (96).




The error germs in Eqé (94) through (96) éan be ignored if
§ and Gm are small enough. The best accuracy in using the central
difference representations is obtained by using the smallest & possi-
ble. Caution must be taken when selecting & so that the numerator of
Eqs (94) through (96) is not of the same order of magnitude as the round-
off>or truncation error associated with M dug to the integration

routine. The § wused for the central difference-technique is

and if the absolute valuve of Gn is larger than DELTA then

6n = DELTA (98)

where DELTA is some small positive number. Thus, Gn is controlled
by the value used for DELTA . To select the best DELTA to use.
several calculations of MA and MAA were made by varying values for

DELTA . By observing the variation between values of MA and MAA

using different DELTA 's varied by a factor of ten from 10-1 to

10_7 , it was observed that for
DELTA > 1072 (95)
M, 's and M 's resulted due to the

significant differences in " AA

error terms in Eqs (94) through (96) becoming too large. Thus, 6 was

too large. For

DELTA < 1076 ' (100)

R
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differences'began to be significant meaning }ouﬂd—off error due'to the
integration routine was the same order of magnitude as the numerator

terms in Eqs (94) through (96). For

107> < DELTA < 1073

4

the least variation occurred and DELTA=10" was selected as the best

value to use.

Convergence Criteria

Convergence is controlled by the scaling factors P and Q .
When Eqs (61) through (62) were used to start the iterative process Q
was set equal to P and P was selected small and was gradually
increased as convergence progressed. When this process became ineffi-
cient and Eqs (57) through (58) were used Q wés set equal to one and
P. was selected small and was gradually increased as convergence pro-
gressed.' |

The convergence criteria used to stop the second-order process

once P became equal to one was

[lul] < 107 (102)
~h
ey Il < 10 (103)
where ||FA|| was calculated only using the F, terms which were not

associated with a boundary control as described earlier.
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Approach to Guessing the Controls

Since 1ift 1s what an aircraft uses to turn itself it is expected
that the aircraft can turn fastest by generating the largest amount of
1ift possible. In order to do so the aircraft's angle of attack should
be on the boundary as shown pictorially in Fig. 1. It is also expected
thaﬁ initially the aircraft's thrust parameter will be at its maximum or
Jginimum value depending from which initial conditions the turn is ini-
tiated. This is expected also because it is known that thrust is a
singular control..

| Based upbn these expectations, the approach to guessing the
controls was to initially guess each control to be a constant value.
The algorithm is free to change that constant to any constant value
within the constraints of the problem. Once a solution for constant
controls was obtained, then the bank angle control was changed to a
linear control by adding another coefficient to the Chebyshev seriés
describing the bank angle while the thrust and angle of attack controls
continued to be expressed as constant controls., This procedure was con-
tinued until adding another coefficient to the bank angle control pro-
duced little change in the time to turn. Once these results were
obﬁained and analyzed, then other higher order controls for thrust and
angle of attack were considered and used fo improve turning times.

This approach was used and results were obtained initially for
three cases. Case 1l was for the prescribed aircraft without thrust
reversal initiating the turn from an initial velocity below the corner
velocity or V,=621 ft/sec (v, @ 13990 ft = 694 ft/sec). Case 2 was

for the prescribed aircraft without thrust reversal initiating the
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turn ffom an initial velocity above the cormer velocity or V1=903
ft)sec . Cése 3 was for the prescribed aircréft with thrust reversal
iﬁitiating the turn from an initial velocity above the corner velocity.
All of these cases used various orders of bank angle controls and con-
stant thrust and angle of attack controls. Then results for three
additional cases, Case 4, 5, and 6, were obtaiged using higher-order
,thrust controls in Case 1, 2, and 3, respectively: These results are

presented in the following section.




VI Results

It is appropriate to discuss the results obtained for the
-optimal angle of attack control. A constant form of expressing angle ) é
of attack when the aircraft's velocity was below the corner velocity was
used in all cases. The constant coefficient was free to be any value i

less than or equal to 0.2 . 1In all cases, the optimal coefficient

PO DN

value was the maximum allowable value, and the associated FA term

was negative indicating that the coefficient desired to be greater than

its maximum value. It was anticipated that if an optimal angle of

attack history existed that was other than the fixed maximum allowable

1imit, a lower constant coefficient would be found which would curve

fit that optimal control history similar to the way the constant bank
angle cont;ol fit the higher-order bank angle controls found. This
situation never occurred and all the following results presented fsund
the optimal angle of attack control to be its maximum value.

" The results for Case 1 are listed and shown in Table 3, Fig. 2,
and Fig. 3, Table 3 lists the optimal coefficients found for the
various forms of the controls used and the resulting Lagrange multipliers.
Fig. 2 shows the various optimal bank angle histories and lists the
associated optimal constant thrust controi variable values for each
type of bank angle history. Fig. 3 shows the aircraft's trajectories
plotted as altitude vs velocity for each of the various bank angle
controls and also shows those trajectories in relation to the corner
velocity curve labeled V; . The results for Cases 2 and 3 are

similarily listed and shown in Table 4, Fig. 4, Fig. 5, and Table 5,
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Fig. 2 Bank Angle Controls for Case 1
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Fig. 6, Fig. 7, respectively. In Figs. 2, 4, and 6, PI=mr and TF=
minimum final time . The times shown in Figs. 3, 5, and 7 are the
minimum final times except for t=0 which identifies the initial con-
ditions of the turn.

From Figs. 3, 5, and } it can be observed that the best turning
times are obtained for cubic or higher order bank angle controls. In
all cases, the trajectories for cubic or higher order bank angle controls
are almost identical and cannot be distinguished individually upon the
graphs. The turning times listed for those trajectories are the best
times obtained. And also, the optimal constant thrust control variable
values for those trajectories are equal to their maximum or minimum
allowable values. The associated FA terms for the thrust control
variable coefficients indicated that the thrust control variable
desired to exceed the allowable limits. Most important of all, it can
be observed that better turning times are obtained when the aircraft's
trajectories follow more closely to the Vc curve or when a larger
portion of the :rajectpries are in the vicinity of the Vc curve.
Based upon this observation, a higher order thrust control variable was
used to attempt to reduce the turning times by maintaining the trajec-
tories closer to the Vc curve since in all cases the trajectories
approached the Vc curve, crossed it, and then continued away from it.

For Cases 4, 5, and 6, two different forms of a thrust control
variable were used to improve turning times. First, a linear thrust
control variable was used. Secondly, a bang-bang type thrust control
variable was used since some of the linear results had a trend towards

infinite slopes. A bang-bang thrust control is where the thrust varies
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g : instantaneously from its maximum or minimum allowable value to its
minimum or maximum allowable value respectively, ‘The time when the
thrust control changes becomes a parameter in the problem. The results

cbtained using these two thrust control variable forms are combined with

e, O aos i

the best results obtained in Cases 1, 2, and 3 to form the total results

in Cases 4, 5, and 6.

The results of Cases 4, 5, and 6 are listéd and shown in Tables

6,.7, 8, Figs. 8, 10, 12, and Figs. 9, 11, and 13 respectively.

JNAY e o

Tables 6, 7, and 8 list the optimal coefficients for the various forms

of controls used‘and the resulting Lagrange multipliers. Figs. 8, 10,
and 12 show the optimal bank angle and thrust control variable

(PI=1) histories. Figs. 9, 11, and 13 show the aircraft's trajectories
for the various forms of the thrust comtrol variable.

The results of Case 4 are best shown in Figs. 8 and 9. The
optimal bank angle controls did not change appreciably for the thrée
different forms for the thrust control variable. The three different
associated aircraft trajectories varied only slightly near the later
part of the trajectory. The minimum times to turn varied only slightly
and the linear thrust control variable resulted in the best turning
time., The final value for the linear thrust control variable is
m=,1394 . This fact along with the fact.that the bang-bang thrust
control did not decrease the turning time indicates that thrust reversal
would have no benefit in this case.

The results of Case 5 are best shown in Figs. 10 and 11l. 1In
this case, the optimal bank angle controls did éhange appreciably. The

linear thrust control variable in this case tended to converge towards
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Table 6

Optimal Coefficients for Case 4

FULL ON ON~QFF ON-LINEAR
THRUST THRUST THRUST
MINIMUM TIME .9575270E+01 | .9580989E+01{ .9553958E+01
.1478629E+01 | .1480379E+01| .1481717E+01
.1066866E+01.| .1021527E+01 ] .1022293E+01
.1010573E+00 | .1078232E+00] .1163696E+00
BANK ANGLE - . 205286 5E+00 |-.2287610E+00 |- .2408131E+00
COEFFICIENTS
-.4622987E-01 |-.5017431E-01 |-.3176035E-01
.4738655E~01 | .4920173E-01| .3962840E-01
THRUST 1.0 -8746054E+00 | 174516 1E+01
CONTROL / .
COEFFICIENTS -.1605740E+01
ANGLE OF
ATTACK 0.2 if V<V |, a=(62660.6/qv?) if vV,
COEFFICIENT :
LAGRANGE .2265828E+01 | .2138913E+01 | .2129796E+01
MULTIPLIERS
. 1879404E401 . 1925062E+01 {~. 18926 10E+01
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Table 7

Optimal Coefficlents for Case 5

FULL~OFF OFF-ON OFF-LINEAR-
A THRUST THRUST ON THRUST
MINIMUM TRME | t. | .1083090E+02| .1060527E+02] .1061267E+02
By | .1393745E401| .1409545E+01| .1403790E+01
B, .3474240E+00 | .8437051E4+00] .7815139E+00
B, |--5815670E-01 .6862573E-01| .4517655E-01
BANK ANGLE B, |--4317098E-01 |-.1589530E+00 {-. 1198256E+00
COEFFICIENTS .
' B | .5783650E-02 {-.4818163E~01 |-.4604624E-01
Bg
THRUST c, 0.0 .6368652E+00 |-.5331165E+00
CONTROL
COEFFICIENTS | C, .2799886E+01
ANGLE OF D, :
ATTACK 0.2 1f V<V _1, a=(62660.6/¢V*) 1f V>V,
COEFFICLENT :
LAGRANGE v, | -2842218E+00] .1893590E+01 | .1666959E+01
MULTIPLIERS v, |.3177074E401 |-.2350928E+01 |-. 2582316401
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. Table 8

Optimal Coefficients for Case 6

FULL REVERSE | REVERSE-ON |REVERSE~LIN-
THRUST THRUST ON THRUST
MINIMUM TIME .1052318E+02| .1025080E+02 .1025377E+02
.1450784i+01 | . 14458776401 .1444364E+01
- .9247146E+00)- . 4805901E+00 |~ . 401029E+00
-.6048093E-01 |-. 3812296E-01 |~.2616676E-01
BANK ANGLE .1847274E+00 | .99981578-01| .8998715E-01
COEFFICIENTS
.6473106E-02| .1030242E-01] .5692150E~02
THRUST -.6 . 7580790E+00 | -. 44455205402
CONTROL
COEFFICIENTS .1000517E+03
ANGLE OF ~ )
ATTACK 0.2 4 VeV |, a=(62660.6/4V°) 1f V>V,
COEFFICLENT :
LAGRANGE . 3061049E+01 }-. 17483658401 |-. 1474 128E+01
MULTIPLIERS . 2144956E+01 |-. 1765735401 |-.2902723E+01
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an infinite slope solution. The off-linear-on thrust curve in Fig. 11
is the solution obtained prior to the program having difficulty in con-
verging to an infinite slope solution. The bang-bang or off-on thrust
control provided the best turning time. Note also the differences in
the trajectories due to the different forms for the thrust control
variable, and also the significant improvement in turning times.

The results of Case 6 are best shown in Figs. 12 and 13. Once
again, results similar to Case 5 are obtained. There is an appreciable
change in bank angle controls, trajectories, and turning times. Also,
the linear thrﬁst control variable tended to converge to an infinite
“slope solution and the reverse-linear-on thrust curve in Fig. 13 is the
solution obtained prior to the program having difficulty in converging
to an infinite_slope solution.

No éther forms for the thrust control variable were attempted
since the results at this point gave a good indication of the miniﬁum
turning times and optimal trajectories that could be expected for the
optimal solutions. 1In Case 4, the linear thrust control results in an
optimal trajecto:y which follows the closest to the Vc curve. In
Cace 5, the bang-bang thrust control resulted in en optimal trajectory
which followed more closely to the Vc curve for a greater part of the

trajectory. The same took place in Case 6. These results can be

improved upon. However, the change in turning times and the trajectories

would not be significant as can be seen in Case 4. The benefit of

thrust reversal can now adequately be evaluated by examining the minimum

turning times and associated optimal trajectories.
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In order to compare Case 1 and 2 to tﬁe results obtained in
Ref (2) and to compare Case 4, 5, and 6 to evaluate the benefit of
thrust reversal, Table 9 has been made. Table 9 contains information
concerning the initial altitude and velocity, fhe final altitude and
vélocity, and the turning time of the best optimal trajectories in each
of the cases. Also included is the initial and final specific energy
6f the aircraft for those trajectories.' This is done because in an
air-to-air combat situation i; is desirable to always maneuver such
that the aircraft's specific energy loss is minimized, since an advan-
tage is maintained over an opponent by havipg more specific energy.
Therefore, it is important to consider specific energy when evaluating

thrust reversal. Specific energy can be determined from the expression

V2
E= (h+ EE? ft (104)
where g=32.131 ft/sec? . The best results of all cases are summarized
in Table 9 as follows. ' ’
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Table 9

Summary of Results

hi Vi hf Vf Ei Ef Ef~E tf
(0 | (feyf (a0 || g0 | (0 | (F0) | (see)
sec sec

DATA SET 6 13990 621 12300 794 19991 22110 2119 10.5
CASE 1 13990 621 17338 781 19991 26830 6839 9.575
[DATA SET 12 13990 903 17634 886 26679 29850 3171 11.2
CASE 2 13990 903 15603 '} 674 26679 22672 ~4007 10.831
CASE 3 13990 903 10429 593 26679 15901 -10778 10.523
CASE 4 13990 621 17297 728 19991 25544 5553 9.554
CASE 5 13990 903 17421 783 26679 26961 282 | 10.605
CASE 6 13990 903 12004 729 26679 20274 -6405 10.251
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~ VII Conclusions and Recommendations

The following conclusions are made based upon the results as f;
summarized in Table 9. |
N 1. The suboptimal control approach is an effective, credible,
and easy means of finding optimal trajectories and minimum turning
times.
g . 2. Thrust reversal i; not beneficial to reduce the minimum
time to turn if the aircraft's initial velocity is below the corner
velocity.

3. Thrust reversal is beneficial to reduce the minimum time
to turn if the aircraft's initial velocity is above the corner velocity. 3
q. 4., While thrust reversal.is beneficial in reducing turning
times, the loss of energy associated with these trajectories is too
large a penalty to pay. : . 1
Using the supoptimal control approach, smaller minimum'turning times
for Case 1 and 2 were obtained than were obtained in Data Set 6 and 12
of Ref (2), respectively. Thus, the suboptimal control approach proved !
effective, credible, and more important, easier in finding optimal

solutions. In Case 4, the best turning time was obtained using an on-

i it

linear thrust control which had a minimum value of 7=.1394 at the
final time (see Fig. 8). The corresponding optimal trajectory (see

Fig. 9) followed the Vc curve the closest. Thus, thrust reversal

would not be beneficial to reduce the turning time since it would not

be used i1f the aircraft's initial velocity was below the corner velocity.

However, in comparing Case 5 for the aircraft without thrust reversal
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and Case 6 for the aircraft with thrust reversal (see Table 9), thrust ;
reversal does prove beneficial in reducing the minimum time to turn 1if
the aircraft's initial velocity is above the corner velocity. Note
that the difference in minimum turning times iﬁ these c;ses is .354
seconds. Thus, thrust reversal improves the minimum turning time by
about 3.3%. In comparing Case 5 and 6 for the chanr~ in specific

energy kEf—E , Case 5 does not lose energy, but gains ehergy

)
slightly, and Case 6 loses a ;ubstantial amount of energy (see Table 9).
Thus, thrust reversal is not beneficial in turning in minimal time with-
out losing specific energy. Note ghat the difference in the change of
specific energy in these two cases is 6,687 feet. Thus, thrust reversal
increases the energy loss by 25.1%.
It is recommended that aifcraft turns bte studied from the

point of view of reducing the energy loss during a turn. Future work
could allow a certain fixed time, slightly greater than the minimuﬁ 1
turning'time? in which to perform a turn and find the qptimal trajec-
tories using various thrust limits that will minimize energy loss.:
Since thrust reversal in this study improved the minimum turning time

by only 3.3% and increased the emergy loss by 25.1%, it would be more

important to minimize energy loss tham to improve turning times in an

air~to~air combat situation.
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